
Invariant two-spaces and canonical forms for the Ricci tensor in general relativity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 55

(http://iopscience.iop.org/0305-4470/12/1/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen., Vol. 12, No. 1, 1979. Printed in Great Britain 

Invariant two-spaces and canonical forms for the Ricci tensor 
in general relativity 
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Department of Mathematics, The Edward Wright Building, Dunbar Street, The University 
of Aberdeen, Aberdeen AB9 2TY, Scotland 

Received 19 May 1978, in final form 31 July 1978 

Abstract. An algebraic classification of the Ricci tensor is given in terms of its invariant 
two-space structure. The method involves classifying a complex fourth-order tensor which 
is algebraically equivalent to the trace-free Ricci tensor and which has all the algebraic 
symmetries of the (complex) Riemann tensor. 

1. Introduction 

The algebraic classification of the Ricci tensor in general relativity has been discussed by 
several authors. The first complete solution to the problem appears to have been given 
by Churchill (1932), who used the invariant two-space structure of the Ricci tensor to 
develop his classification. Plebanski (1964) gave both a tensorial and a spinorial 
approach to the problem whilst an alternative discussion in spinors was given by Ludwig 
and Scanlon (1971). A more recent tensorial approach was pointed out by Hall (1976). 
Churchill’s paper is interesting in that whereas most algebraic discussions of the Ricci 
tensor tend to be concerned with its eigenvector structure, Churchill considered the 
invariant two-spaces of this tensor. However, Churchill’s method eventually reduces to 
an eigenvector approach. This procedure will be taken up again here where it will be 
shown that a complete classification of the Ricci tensor (more precisely the trace-free 
Ricci tensor) can easily be given entirely in  terms of its invariant two-space structure. In  
fact, in the (Grassmann) manifold of two-dimensional subspaces of the tangent space at 
some point on the space-time manifold, those two-spaces which are invariant two- 
spaces of the Ricci tensor occur naturally in  orthogonal pairs and much use is made of 
this fact. The method utilises a ‘complexified’ version of the trace-free Ricci tensor and 
this brings about a simplification in much the same way as does the ‘complexification’ of 
the Weyl tensor in  the well known Petrov classification. 

2. The structure of the Ricci tensor 

Throughout the paper, M will denote a space-time manifold of signature +2 and if 
p E M ,  T p ( M )  will denote the tangent space to M at p .  Thus T p ( M )  is a real 
four-dimensional Lorentzian inner product space. Vectorial classifications of the Ricci 
tensor are usually based on the fact that the mixed Ricci tensor with components Rab in 
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some chart about p determines a linear map R :  T,(M)+ T p ( M ) .  The general SegrC 
type classification of R then proceeds from the usual Jordan and rational canonical 
forms for a 4 x 4 real matrix. (A straightforward way of doing this which avoids use of 
the rational canonical form is outlined in the appendix.) In this paper, the action of R 
on the manifold of two-dimensional subspaces of T p ( M )  will be considered and R will 
be classified according to its invariant two-space structure. A two-dimensional 
subspace (two-space) V of T,(M) is called an invariant two-space of R if whenever 
U E V, then R(z.)E V. The two-dimensional subspaces of T p ( M )  are exhaustively 
characterised according as they contain exactly two, one or no  null vectors and are then 
respectively called time-like, null and space-like. The two-space orthogonal to a 
space-like (respectively time-like, null) two-space is time-like (respectively space-like, 
null). The following results concerning the algebraic structure of the Ricci tensor at p 
can now be stated: 

( i )  There always exists an invariant two-space of R. 
(ii)  If V is an invariant two-space of R, then so is the two-space orthogonal to V. 

(iii) R has a space-like (equivalently time-like) invariant two-space= R has two 

(iv) R has a null invariant two-spaceeR has a null eigenvector. 
(v) R has at least two distinct orthogonal eigenvectors, at least one of which is 

The result ( i )  was given by Rainich (1925) whilst the remainder are contained in 
Churchill’s paper (1932). Simpler proofs of all these results were given by Hall (1976). 

At this point, i t  is convenient to set forth the general statement of the SegrC type 
classification of the mapping R. At any point p EM, the Ricci tensor must assume 
exactly one of the following four canonical types (together with their possible 
degeneracies): ( a )  R is diagonalisable? (SegrC type (1, 1, 1, 1)); (6) R has SegrC type 
(2, 1, 1); ( c )  R has SegrC type (3, 1); ( d )  R has two complex (non-real) and two real 
eigenvalues, the latter two eigenvalues being associated with simple elementary divisors 
of R (see the appendix). Concerning these types, one can make the following remarks: 

(vi) R has a time-like eigenvector at p @ R  is diagonalisable at p S .  
(vii) If R has two null eigenvectors at p with distinct directions, then R is 

diagonalisable at p and the corresponding eigenvalues are equal. 
(viii) R has all its eigenvalues real but possesses a non-simple elementary divisor at 

p (that is i t  belongs to type (6) or (c) a b o v e ) e R  has a unique null eigendirec- 
tion at p .  

These results can all be deduced by inspection of the canonical form for R, but more 
direct algebraic proofs are available. 

orthogonal space-like eigenvectors. 

space-like. 

3. Invariant two-spaces 

From now on, we restrict attention to the trace-free Ricci tensor where, in 
components, &b = Rob -iRgab with R = Rabgab the Ricci scalar and gab the metric 
tensor. An eigenvector (invariant two-space) of the Ricci tensor is of course an 
eigenvector (invariant two-space) of the trace-free Ricci tensor and vice versa. Let U, 

:The term ‘diagonalisable‘ will always mean ‘diagonalisable over R’. In case ( d ) ,  the Ricci tensor is 
diagonalisable over C but not over R.  
i It  follows that static space-times always have diagonalisable Ricci tensors since the Ricci tensor always 
admits a time-like eigenvector (Ehlers and Kundt 1962). 
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v E T,(M) span an invariant two-space V of d at p .  Then in components one has 

U = aub +pub U a d a b  = yub + (3.1) 

where a,@, y , 6 ~ R .  If F = U  A U is the simple bivector at p associated with the 
two-space V, then it easily follows that the conditions (3.1) are equivalent to 

db[aFbc]= AFac (3.2) 

where Fab are the covariant components of F at p ,  where A E R and where the square 
brackets denote the usual antisymmetrisation. 

Equation (3.2) can now be written in either of the equivalent forms * * cd (i) EabcdFCd = 2hFab (ii) EabcdF =-2AFab (3.3) 

(3.4) 

where 

and where an asterisk in the appropriate place denotes the left or right dualityoperator. 
The components Eabcd have all the algebraic symmetries of the Riemann tensor 
components Rabcd and are related to them and to the Weyl tensor components Cabcd by 
the equation 

Also, the tensor E satisfies the relations 

The conditions of equation (3.3) show that an invariant two-space of d at p 
determines (to within a scaling factor) a simple ‘eigen-bivector’ of E and conversely?. 
The simple eigen-bivectors of E occur in dual pairs just as the invariant two-spaces of d 
occur in orthogonal pairs. Such a pair of invariant two-spaces then determines (to 
within a scaling factor) a self-dual-anti-self-dual pair of complex bivectors according to 
(3.4) and conversely. 

Although interest here centres on simple eigen-bivectors of E, this is in a sense the 
same as considering all eigen-bivectors of E (that is all bivectors F satisfying (3.3(i))  at 
p )  for if this equation holds at p with A # 0 then F is necessarily simple. If (3.3(i)) holds 
with A = 0 then although F need not be simple at p it determines, to within a scaling 
factor, a dual pair of simple bivectors at p which satisfy (3.3) (i) with A = 0 at p .  

Also, if (3.4) holds with O # A  E@, then a duality rotation of F reveals a new 
self-dual-anti-self-dual pair of complex bivectors satisfying (3.4) with 0 # A E R. 
consequently, each pair of orthogonal invariant two-spaces of d determines (to wi+thin 
a complex factor) a self-dual-anti-self-dual pair of ‘complex eigen-bivectors’ of Eabcd 

satisfying (3.4) with A E @ and conversely. So the problem of determining the invariant 
two-spaces of d becomes that of solving the equations (3.4). 

I t  is now convenient to introduce a complex null tetrad { I ,  m ,  t ,  7) at p with 1, m real 
null vectors and t a complex null vector. The only non-vanishing inner products 

t If A = 0 and Fob is null in (3.4), infinitely many pairs of null invariant two-spaces are admitted 
+ 
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between these vectors are 1 .  m = t . 5  = 1. From this null tetrad (suitably oriented) one 
can construct a spanning set of three independent complex self-dual bivectors (Sachs 
1961) 

v a b  = 2 l [ ~ i b ]  M a b  = 2 1 r a m b i +  2 7 1 ~ b 1  = 2 m [ a f b ] .  (3.8) 

These bivectors and their anti-self-dual conjugates satisfy the completeness relations 

(3.9) 
g a [ c g d ] b  + i i c & a b c d  = v a b u c d  + U a b V c d  - i M a b M c d  

g a [ c g d ] b  - ii J<eabcd = v a b  v c d  f u a b  v c d  - i a a a c d  

where E,bcd is the alternating symbol: Eabcd = €[ab&] and ~ 0 1 2 3  = 1. 
The discussion presented here can be thought of conveniently in terms of spinors. 

Each complex eigen-bivector according to (3.4) determines a symmetric eigen-two- 
spinor of the trace-free Ricci spinor   DAB^^. Indeed, equation (3.4) is equivalent to the 
spinor relation ( D A B k d A B  = 4 A 4 2 ~  yhere C#JAB is the symmetric two-spinor associated 
with the complex self-dual bivector Fab.  

4. The classification 

The completeness relations (3.9) and the dual condition on 6 contained in (3.7) allow a 
decomposition of the tensor ,6 at p along the basis members V, M, U and their 
conjugates. The result is 

&ahcd = E1 C'abucd + E 2  vcab v c d  -k E N a b M c d  E4 u a b  v c d  + E5 V Q h  U c d  

f E 6  u a & f c d  + E 7 a a b U c d  + E8 V a b M c d  + E 9 G a b  v c d  (4.1) 

where E l ,  EZ,  . . . , E9 E C and where the Hermitian symmetry condition on E reveals 
that E l ,  E2 ,  E3 E R and that E5 = l?4,  E7 = l?6 and E9 = ,!?a. The classification is based on 
the number of independent self-dual-anti-self-dual pairs of complex bivectors satisfy- 
ing (3.4) and their type (null or non-null). That at least one such pair exists is 
guaranteed by the results (i) and (ii) in 0 2 and the discussion in 0 3. 

+ 

4 .1 .  Case 1 

Suppose E admits exactly one independent solution of (3.4) and that i t  i,s non-null. Then 
the relevant solution in (3.4) may be taken as the bivector M and so E takes the form 
(4.1) with E 6  = E7 = E 8  = E 9  = 0. In  order that U and V should not also satisfy (3.4) 
one requires El # 0 and E 2  # 0. A null rotation of the complex null tetrad may then be 
performed which preserves the above conditions but which gives lEll = lE21. If E l  = E2,  
the extra (non-null) solutions U i V are also admitted. This case will be deav with 
later, the present case requiring E l  = -Ez .  The resulting form for the tensor E then 
yields d from (3.7) and so leads to the Ricci tensor 

+ 

R a b  = P l ( l a l b  - m a m b ) + 2 P 2 l ( a m b ) + P 3 X a X b  +p4YcrYb (4.2) 

at p ,  where p l ,  p2, p3, p 4  E R with p1 # 0 and where t ,  J 2  = x ,  + i y ,  with x a x ,  = y Q y ,  = 1 .  
Here the Ricci tensor has two non-real and two real eigenvalues (see the appendix). I t  is 
readily shown that no other independent solutions of (3.4) exist. 
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4.2. Case2 
+ 

Suppose now that E admits exactly one independent solution of (3.4) and that it is null. 
Then the relevant solution of (3.4) may be taken as the bivector V. This condition 
together with the condition preventing the bivector M from also becoming a solution 
leads to E l  = E6 = E7 = 0,  Es # 0, a null rotation having been used to make E8 real. The 
condition that no other independent solutions of (3.4) exist is then E4 + 2E3 = 0. A final 
null rotation may then be used to set E2 = 0 and the Ricci tensor takes the form 

(4.3) 

with (T, ul, ~2 E R and U # 0. In fact a null rotation can be used to set U = 1. The Ricci 
tensor (4.3) has SegrC type (3, 1) or some degeneracy of this type (see the appendix). 

Rab = 2U1l(~mb) + 2 c l ( a X b )  + U l X a X b  + (+2YaYb 

4.3. Case 3 

Suppose now that 2 admits exactly two independent solutions of (3.4) (together with 
possibly their linear combinations). I t  is straightforward to show that in this case there 
must be a unique null solution of (3.4) together with a non-null solution and that these 
solutions may be chosen as the bivectors V and M. These conditions lead to El  = E6 = 
E7 = E8 = E9 = 0 and E2 # 0 whilst a null rotation may be used to make E, real. The 
Ricci tensor is 

(4.4) 

where a,  a l ,  a2,  a 3  E R with a # 0. If a > 0 ( a  < 0), a null rotation can be used to set 
a -- 1 (a  = -1). The Ricci tensor (4.4) has SegrC type ( 2 ,  1, 1) or some degeneracy of 
this type (see the appendix). 

4.4. Case 4 

Finally suppose 2 admits three independent solutions of (3.4) (together with possibly 
their linear combinations). It  easily follows that the number of independent null 
solutions is either zero or at least two. In the former case one is lead to case 1 with 
E l  = E2 and so 

Rab = P l ( l a 1 b  + mamb)+2P21(amb)+P3XaXb + P 4 Y a Y b  (4.5) 

where p l ,  p 2 ,  p 3 ,  p 4  E R, P I #  0 and where the extra conditions p3 # p 2 - p 1 #  p 4  hold. The 
Ricci tensor (4.5) has SegrC type {1,1,1,1} or some degeneracy of this type (see the 
appendix). In  the latter case one may arrange the null tetrad so that the null bivectors 
concerned are U and V. The bivector A4 then becomes a third independent solution of 
(3.4) and so E l  = E2 = E6 = E7 = E8 = E9 = 0 whilst a null rotation may be used to make 
E, real. Then 

(4.6) 

where P I ,  Pz ,  P ~ E R .  The Ricci tensor (4.6) has SegrC type {(ll), 1 , l )  or some 
degeneracy of this type (see the appendix). 

These results may be summarised as follows: 
(1) The Ricci tensor has a unique pair of (orthogonal) invariant two-spaces and 

they are non-null if and only if i t  has non-real eigenvalues. 
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(2) The Ricci tensor has a unique pair of (orthogonal) invariant two-spaces and 
they are null if and only if it has Segrk type ( 3 ,  1). In the degenerate case ((3, l)), 
infinitely many pairs of null invariant two-spaces occur, all based on the null 
eigenvector 1. 

( 3 )  The Ricci tensor has exactly two independent pairs of invariant two-spaces if 
and only if it has SegrC type ( 2 ,  1, 1) or one of its degeneracies. Exactly one of 
these pairs of invariant two-spaces is null if a2#a3 in (4.4). If a 2 = a 3  then 
infinitely many pairs of null invariant two-spaces occur, all based on the null 
eigenvector 1. 

(4) The Ricci tensor has exactly three independent pairs of invariant two-spaces if 
and only if it is diagonalisable (SegrC type (1, 1, 1, 1) or some degeneracy of this 
type). The number of pairs of null invariant two-spaces is either zero or at least 
two, and in the latter case, null invariant two-spaces with different null direc- 
tions exist. 

5. The Bel criteria 

In  the classification of the Weyl tensor, the well known Bel criteria (Bel 1962) give a 
convenient description of the Petrov classification at p E M  in terms of certain contrac- 
ted relationships between the Weyl tensor and its associated null directions at p .  Criteria 
similar to those of Bel can be given for the tensor E(#O) at p and the following 
relationships between such criteria and the Ricci tensor type at p can be proved: 

( a )  The trace-free Ricci tensor has Segrt type ( 2 ,  1, 1) with all eigenvalues zero if 
and only if there exists 1 E T,(M), 1 # 0 such that laEabcd = 0. The vector 1 is 
necessarily null, unique up to a scaling factor and coincides with the (unique) 
null Ricci eigenvector. 

( b )  The trace-free Ricci tensor has SegrC type ( 3 ,  1) with all eigenvalues zero if and 
only if there exists a non-zero null bivector F at p and a vector 1 E T,(M), 1 # 0 
such that l a E a b c d  = @cd. The vector 1 is again necessarily null, unique up to a 
scaling factor and coincides with the (unique) null Ricci eigenvector and the 
repeated principal null direction of F. 

( c )  A null vector 1 E T,(M), 1 # 0 is a Ricci eigenvector i f  and only if there exists 
CY E [w such that I a l C E a b c d  = a&. 

In ( a ) ,  alternative equivalent statements are lnEzbcd = 0 and ln&bcd = 0 and there is 
a similar obvious alte+rnative for (b ) .  In ( c ) ,  alternative equivalent statements are 
l n l C E : b c d  = 0 and l a l C E a b c d  = ( ~ l b l d  ((U E R) for some null vector 1. I t  is remarked that 
infinitely many distinct null directions may satisfy the conditions of ( c )  above (unlike the 
equivalent case for the Weyl tensor). The existence of at least two distinct null 
directions satisfying condition ( c )  is equivalent to the Ricci tensor being diagonalisable 
and possessing precisely those null directions as eigendirections. The equivalent of the 
Debever-Penrose condition on the Weyl tensor (Sachs 1961) may not be investigated 
on the tensor E. 

( d )  If 1 is a null vector in  T,(M), I Z O ,  then Rabla lb  = O  if and only if 

In  ( d ) ,  equivalent conditions are o and l b i c l ~ e ~ a l b c ~ d l f l  = o for some 
null vector 1. Unlike the situation for the Weyl tensor, there may be no null directions or 
infinitely many distinct null directions satisfying the conditions ( d ) .  Examples with the 
latter property are easily constructed, whilst an example of the former property is given 

~ b l C l [ e E a ] b c [ c i l f l  = 0. 
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by (4.5) with P I =  p3 = p4 = 1 p2 = 0. The proofs of ( a ) ,  ( b ) ,  ( c )  and ( d )  can be easily 
gathered from the result (iv) of § 2 and equations (3.5) and (4.1). 

6. Concluding remarks 

The preceeding classification applies quite generally to any real symmetric second- 
order tensor on a four-dimensional Loretzian manifold M. However, the algebraic 
types apply to such tensors at a point p E M  and for such a tensor in some open set 
U EM, the algebraic type may not be the same throughout U. If, however, the tensor 
has non real eigenvalues at p ,  then it will maintain this feature throughout some 
neighbourhood of p .  

Equation (4.1) when contracted and combined with the obvious relation in (3.7) 
shows that any real symmetric second-order trace-free tensor at p E M can be written in 
terms of at most three (simple) bivectors and their duals, thus generalising the case of 
the (trace-free) Maxwell energy momentum tensor which can be expressed in terms of a 
single (simple) bivector and its dual (cf Plebanski 1964). 

Of the four algebraic types of tensors discussed here, members of two of them (those 
with non-real eigenvalues and those with SegrC type (3, 1) or some degeneracy of this 
type) fail to satisfy either of the following two conditions (cf Plebanski 1964, Collinson 
and Shaw 1972, Hall 1976): for every time-like vector U E T,(M): (i) Tabuaub 3 0 ;  (ii) 
Tabub is not space-like, where Tab are the components of the symmetric tensor under 
consideration. Condition (i) is the weak energy condition and (i) and (ii) together 
constitute the dominant energy condition (Hawking and Ellis 1973). They place what 
appear to be physically realistic conditions on the local energy density and energy flow, 
and ensure that physically reasonable energy-momentum tensors in general relativity 
must be drawn from (certain subsets of) the other two algebraic types. 
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Appendix 

In this appendix, a strightforward calculation is presented of the various SegrC types for 
the Ricci tensor at p E M. One seeks solutions k" E T p ( M )  and A E R  of the eigenvalue 
problem (Rab -AS,b)k" = 0 where the index b is raised so as to convert the problem into 
the standard form for matrices. The possible canonical forms for Rab can now be listed. 
Firstly, there is the case when non-real eigenvalues occur. Secondly, when the 
eigenvalues are real, one has the following Jordan forms given in terms of their SegrC 
types: (i) (1, 1, 1, 1) (diagonalisable case); (ii) (2, 1, 1); (iii) {2,2); (iv) {3, 1); (v) (4). 
Because of the Lorentz signature of the metric tensor, the cases {2,2} and (4) cannot 
occur. For example suppose RQb has SegrC type (4) at p E M. Then there exists a basis of 
T p ( M )  in which Rab takes the canonical Jordan form for this SegrC type. The condition 
that Rabgb, be symmetric then implies certain algebraic constraints on the components 
of gab in the above basis from which one readily deduces that det(gab)>O. This 



W J Cormack and G S Hall 

contradicts the Lorentz signature of gab.  A similar argument removes the possibility of 
the Segrk type (2,2} occuring (where because of results (vii) and (viii) of § 2 and the fact 
that eigenvectors corresponding to distinct eigenvalues are orthogonal, one need only 
consider the case when the eigenvalues are equal). 

In the other cases when real eigenvalues exist, one can write down the canonical 
Jordan form in an appropriate basis in each case and use the symmetry of R a b g b ,  to 
impose conditions on the components gab in that basis. The Jordan form then allows 
one to write out a 'canonical' form for Rab in terms of certain vectors, the constraints 
imposed on g a b  then providing the orthogonality conditions on these vectors. For the 
SegrC types (1, 1, 1, l}, (2, 1, 1) and (3,  l}, one is easily led to the general expressions 
(4.5), (4.4) and (4.3) respectively, where now the only condition on these equations are 
(Y # O  and a# 0. 

In the case when complex eigenvalues occur, one can evaluate the canonical form 
easily by the following considerations. If Rab has the complex eigenvectors s k i t  
(s, t E T,(M)) with corresponding eigenvalues a f i b  (a, b E R, b # 0), then the fact that 
these eigenvalues are different implies that s f it are orthogonal. Hence sas, + t a t ,  = 0. 
Also, one may assume that sata = 0, for if not, then there exists a non-zero complex 
multiple of s i i t  whose real and imaginary parts are orthogonal. (The possibility that s 
and t are parallel and null is easily ruled out since this would imply that b = 0.) Hence 
one of the real vectors s and t is time-like and the other is space-like and it easily follows 
that they span a (time-like) invariant two-space of R at p .  The result (iii) of § 2 then 
shows the existence of two (real) space-like eigenvectors of R and consequently R is 
diagonalisable over @. The obvious diagonal form for R then leads to equation (4.2) 
where real null vectors I and m, proportional to s f t, are introduced. 
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